

$$
y^{\prime}=x-y
$$

We see:

- the solutions approach an asymptotic line
- Through each point there is a unique solution

Question: If $y(0)=0$, what is $y(2)$ closest to?
a. 0.5
b. 1
c. 1.5
d. 2

Theorem 1 (not tested)
Consider a differential equation $d y / d x=f(x, y)$. If $f(x, y)$ and $\partial f / \partial y$ are continuous in some rectangle with (a, b) in the interior, then the dee. has a unique solution with $f(a)=b$ on some open interval containing a.

Example $y^{\prime}=x-y . \quad x-y$ is continous $\frac{\partial(x-y)}{\partial y}=-1$ is cantincoos.

There is a unique solution for each in itial condition.

Question: What is the difference between a slope field and a vector field?

